Journal of Algebra and Applied Mathematics

Vol. 21 (2023), No.2, pp.111-121
ISSN: 2319-7234
(C) SAS International Publications

URL : www.sasip.net

Semigroup and monoid structures of β-language

A. Jain, S. Leeratanavalee*, S. Jain and G.C. Petalcorin, Jr.

Abstract

. β-languages of order n have been introduced by the authors of [5] and their equivalence with the semi-deterministic pushdown automaton (SDPDA) languages of order n has been established in $[5,6]$. In this paper, we make a study of various closure properties of β-languages. We show that the class of β-languages of order n forms a semigroup under union $(n \geq 2)$ and concatenation ($n \geq 1$). We further show that the class of β-languages of order n together with the empty language $\{\lambda\}$ forms a monoid under union $(n \geq 2)$ and concatenation ($n \geq 1$).

AMS Subject Classification (2020): 68Q45
Keywords: β-languages, β-grammar, context-free grammar, contextfree langauges (CFL)

1. Introduction

The authors of [5] introduced the concept of β-grammar and β-languages of order n and proved their equivalence with the semi-deterministic pushdown automata (SDPDA) languages of order n in $[5,6]$. The class of β languages of order n lies between non-deterministic context-free languages and deterministic context-free languages. Since the class of deterministic CFLs contains all regular languages, therefore, the class of β-languages of order n also contains all regular languages.

Again, the class of β-languages (or SDPDA languages) of order n includes the syntax of most programming languages including the mechanics

[^0]of the parser in a typical compiler. Since each use of a production rule introduces exactly one terminal, including the null symbol " λ " into a sentential form, therefore, a string of length " k " has a derivation of at most " $(n+1) k^{\prime \prime}$ steps using β-grammar of order n.

The present paper is motivated to study various closure properties of β-languages. In other words, in this paper, we study certain operations on β-languages that are guaranteed to produce again a β-language of the same order. We show that the class of β-languages of order n forms a semigroup under union ($n \geq 2$) and concatenation $(n \geq 1)$. We further show that the class of β-languages of order n together with the empty languages $\{\lambda\}$ forms a monoid under union $(n \geq 2)$ and concatenation $(n \geq 1)$.

2. Preliminaries

In this section, we present some definitions available in the literature:
Definition 2.1 [12].
(i) A finite nonempty set Σ is called an "alphabet".
(ii) A "string" is a finite sequence of symbols from the alphabet.
(iii) The "concatenation" of two strings " u " and " v " is the string obtained by appending the symbols of " v " to the right end of " u ".
(iv) The "length" of string w denoted by $|w|$ is the number of symbols in the string.
(v) An "empty string" is a string with no symbol in it. It is denoted by λ and $|\lambda|=0$.
(vi) If Σ is any alphabet, then " Σ^{k} " $(k \geq 0)$ denotes the set of all strings of length k with symbols from Σ.
(vii) The set of all strings over an alphabet Σ is denoted by Σ^{*}, i.e.

$$
\Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \cdots
$$

(viii) The set of all non-empty strings from the alphabet Σ is denoted by Σ^{+}and is given by

$$
\Sigma^{+}=\Sigma^{*}-\{\lambda\}=\Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \cup \cdots
$$

(ix) A "language" L over an alphabet Σ is defined as a subset of Σ^{*}.
(x) A string in a language L is called a "sentence" of L.
(xi) The "union", "intersection" and "difference" of two languages are defined in the set theoretic way.
(xii) The "complement" of a language L over an alphabet Σ is defined as $\bar{L}=\Sigma^{*}-L$.
(xiii) The "concatenation" of two languages L_{1} and L_{2} is the set of all strings obtained by concatenating a string of L_{1} with a string of L_{2}, i.e.

$$
L_{1} L_{2}=\left\{u v \mid u \in L_{1} \text { and } v \in L_{2}\right\}
$$

(xiv) The "star-closure" of a language L is defined as

$$
L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots
$$

Also, the "positive-closure" of a language L is given by

$$
L^{+}=L^{1} \cup L^{2} \cup \cdots
$$

(xv) A "grammar" G is defined as a quadruple

$$
G=(V, T, S, P)
$$

where V is a finite set of objects called "variables", T is a finite set of objects called "terminal symbols" with $V \cap T=\phi, S \in V$ is a special symbol called the "start" symbol, P is a finite set of "productions" of the form $x \rightarrow y$ where $x \in(V \cup T)^{+}$and $y \in$ $(V \cup T)^{*}$.
(xvi) We say that the string $w=u x v$ "derives" the string $z=u y v$ if the string z is obtained from w by applying the production $x \rightarrow y$ to w. This is written as $w \Rightarrow z$. If

$$
w_{1} \Rightarrow w_{2} \Rightarrow \cdots \Rightarrow w_{n}
$$

then we say that w_{1} derives w_{n} and write $w_{1} \Rightarrow^{*} w_{n}$.
(xvii) Let $G=(V, T, S, P)$ be a grammar. Then the "language" $L(G)$ generated by G is given by

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

(xviii) If $w \in L(G)$, then the sequence

$$
S \Rightarrow w_{1} \Rightarrow w_{2} \Rightarrow \cdots \Rightarrow w_{n} \Rightarrow w
$$

is a "derivation" of the sentence w. The strings $S, w_{1}, w_{2}, \cdots, w_{n}$ which contain variables as well as terminals are called "sentential forms" of the derivation.
(xix) A grammar $G=(V, T, S, P)$ is said to be "right-linear" (resp. left-linear) if all productions in G are of the form

$$
A \rightarrow x B(\operatorname{resp} . A \rightarrow B x)
$$

or

$$
A \rightarrow x
$$

where $A, B \in V$ and $x \in T^{*}$. A "regular grammar" is one that is either right linear or left linear.

Definition 2.2 [6]. A context-free grammar $G=(V, T, S, P)$ is said to be a " β-grammar of order n " $(n \geq 1)$ if all productions in P are of the form $A \rightarrow a x$ where $a \in T \cup\{\lambda\}$ and $x \in V^{*}$ and any pair (A, a) occurs atmost " n " times in P. A β-grammar of order n is denoted by $\beta(n)$.

Definition 2.3 [6]. The language generated by a β-grammar of order n is called a " β-language of order n ".

3. Closedness of β-languages of order n under union, concatenation and star-closure operations

In this section, we prove that the class of β-languages of order n is closed under union, concatenation and star-closure operations.

Theorem 3.1. The family of β-languages of order $n(n \geq 2)$ is closed under union.

Proof. Let L_{1} and L_{2} be two β-languages of order $n(n \geq 2)$ generated by the β-grammars $G_{1}=\left(V_{1}, T_{1}, S_{1}, P_{1}\right)$ and $G_{2}=\left(V_{2}, T_{2}, S_{2}, P_{2}\right)$ resp. Without any loss of generality, we may assume that $V_{1} \cap V_{2}=\phi$ and $T_{1} \cap T_{2}=\phi$.

We construct a new grammar $G=(V, T, S, P)$ where
(i) $V=V_{1} \cup V_{2} \cup\{S\} ; S$ is a new variable that does not belong to V_{1} and V_{2},
(ii) $T=T_{1} \cup T_{2}$, and
(iii) $P=P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} ; S \rightarrow S_{2}\right\}$.

Then G is a β-grammar of order n and $L(G)$ is a β-language of order n. It is clear that

$$
L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)=L_{1} \cup L_{2}
$$

Thus the family of β-languages of order $n(n \geq 2)$ is closed under union.

Remark 3.2. Since the order of β-grammar G is at least 2 , therefore, the result of Theorem 3.1 holds true only for $n \geq 2$.

Theorem 3.3. The family of β-languages of order $n(n \geq 1)$ is closed under concatenation.

Proof. Let L_{1} and L_{2} be two β-languages of order $n(n \geq 1)$ generated by the β-languages $G_{1}=\left(V_{1}, T_{1}, S_{1}, P_{1}\right)$ and $G_{2}=\left(V_{2}, T_{2}, S_{2}, P_{2}\right)$ resp. Without any loss of generality, we may assume that $V_{1} \cap V_{2}=\phi$ and $T_{1} \cap T_{2}=\phi$.

We construct a new grammar $G=(V, T, S, P)$ where
(i) $V=V_{1} \cup V_{2} \cup\{S\} ; S$ is a new variable that does not belong to V_{1} and V_{2},
(ii) $T=T_{1} \cup T_{2}$,
(iii) $P=P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$.

Then G is a β-grammar of order n and $L(G)$ is a β-language of order n.
Also,

$$
L(G)=L\left(G_{1}\right) L\left(G_{2}\right)=L_{1} L_{2}
$$

Theorem 3.4. The class of β-languages of order $n(n \geq 2)$ is closed under star-closure operation.

Proof. Let L_{1} be a β-language of order $n(n \geq 2)$ generated by the β grammar $G_{1}=\left(V_{1}, T_{1}, S_{1}, P_{1}\right)$.

We construct a new grammar $G=(V, T, S, P)$ where
(i) $V=V_{1} \cup\{S\} ; S$ is a new variable that does not belong to V,
(ii) $T=T_{1}$, and
(iii) $P=P_{1} \cup\left\{S \rightarrow S_{1} ; S \rightarrow \lambda\right\}$.

Then G is a β-grammar of order n and $L(G)$ is a β-language of order n. Also,

$$
L(G)=\left(L\left(G_{1}\right)\right)^{*}=L_{1}^{*} .
$$

Thus the class of β-languages of order $n(n \geq 2)$ is closed under starclosure operation.

Remark 3.5. Since the order of β-grammar G is at least 2 , therefore, the result of Theorem 3.4 holds true only for $n \geq 2$.

4. Semigroup and monoid structures of β languages of order n

In this section, we discuss the semigroup and monoid structures of β-languages under union and concatenation operations. We begin with the following definition:

Definition 4.1 [4].
(i) A "semigroup" is a nonempty set G together with a binary operation "*" on G which is associative i.e.

$$
a *(b * c)=(a * b) * c \text { for all } a, b, c \in G
$$

(ii) A "monoid" is a semigroup G which contains a (two-sided) identity element $e \in G$ such that

$$
a * e=e * a=a \text { for all } a \in G
$$

Theorem 4.2. The class of β-languages of order $n(n \geq 2)$ forms a semigroup under union.

Proof. The union operation is a binary operation on the class of β-languages of order $n(n \geq 2)$. It is clearly associative since $L_{1} \cup\left(L_{2} \cup L_{3}\right)=$ $\left(L_{1} \cup L_{2}\right) \cup L_{3}$ for all β-languages L_{1}, L_{2}, L_{3} of order $n(n \geq 2)$.

Thus the class of β-languages of order $n(n \geq 2)$ forms a semigroup under union.

Theorem 4.3. The family of β-languages of order $n(n \geq 1)$ forms a semigroup under concatenation.

Proof. The binary concatenation operation on the class of β-languages of order $n(n \geq 1)$ is clearly associative since $L_{1}\left(L_{2} L_{3}\right)=\left(L_{1} L_{2}\right) L_{3}$ for all β-languages L_{1}, L_{2}, L_{3} of order $n(n \geq 1)$.

Thus the class of β-languages of order $n(n \geq 1)$ forms a semigroup under concatenation.

Theorem 4.4. The class of β-languages of order $n(n \geq 2)$ together with the empty language $\{\lambda\}$ forms a monoid under union.

Proof. Since $L \cup\{\lambda\}=\{\lambda\} \cup L=L$ for all β-languages of order $n(n \geq 2)$, therefore, the result holds in view of Theorem 4.2.

Theorem 4.5. The class of β-languages of order $n(n \geq 1)$ together with empty language $\{\lambda\}$ forms a monoid under concatenation.

Proof. Since $L\{\lambda\}=\{\lambda\} L=L$ for all β-languages of order $n(n \geq 1)$, therefore, the result holds in view of Theorem 4.3.

5. Conclusion

In this paper, we made a study of closure properties of β-languages under various operations viz. union, concatenation and star-closure. We have shown that the class of β-languages of order n forms a semigroup under union $(n \geq 2)$ and concatenation $(n \geq 1)$. We have further shown that the class of β-languages of order n together with the empty language $\{\lambda\}$ forms a monoid under union $(n \geq 2)$ and concatenation $(n \geq 1)$.

Acknowledgment. The authors would like to express their sincere gratitude to the referees for their valuable suggestions and comments which improved the paper.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation and Computing, Vol. 1, Englewood Cliffs. N.J.: Prentice Hall, 1972.
[2] M.A. Harriosn, Introduction to Formal languages Theory, Addison Wesley, Reading, Mass., 1978.
[3] J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education, Addison-Wesley, Reading, Mass., 2004.
[4] T.W. Hungerford, Algebra, Springer Private Ltd., 2005.
[5] A. Jain, G.C. Petalcorin, Jr. and K.-S. Lee, Semi-deterministic pushdown automata (SDPDA) of order " n " and β-languages, J. Algeb. and Applied Mathematics, 14 (2016), 27-40.
[6] A. Jain, S. Jain, H. Ghazwani and G.C. Petalcorin, Jr.: Formulation of β-language from the semi-deterministic pushdown automata(SDPDA) of order n, J. Algeb. and Applied Mathematics, 21 (2023), 61-78.
[7] A. Jain, K.P. Shum, G.C. Petalcorin, Jr. and K.-S. Lee, α-grammar and quasi-deterministic pushdown automata (QDPDA) of order " n ", J. Algeb. and Applied Mathematics, 18 (2020), 99-114.
[8] A. Jain, S. Jain and G.C. Petalcorin, Jr.: Construction of α-language from the language of a QDPDA of order " n ", J. Anal. and Appl., 20 (2022), 135-150.
[9] A. Jain, Semi-deterministic Virtual Finite Automaton (SDVFA) of order (s, t), J. Compt. Math. Optim., 5 (2009), 1-22.
[10] A. Jain, Semi-deterministic Virtual Finite Automaton (SDVFA) of order (s, t) and Regular Grammar, Ars Combinatoria, 115 (2014), 187-196.
[11] A. Jain,Equivalence of Semi-deterministic Virtual Finite Automaton (SDVFA) with DFA, VDFA, NFA and $\epsilon-N F A$, Ars Combinatoria, 117 (2014), 363-373.
[12] P. Linz, An Introduction to Formal lanuages and Automta, Narosa Publishing House, 2009.
[13] I. Petre and S. Arto, Algebraic systems and pushdown automata, In M. Droste, W. Kuich and H. Vogler (eds.), Handbook of Weighted Automata, Springer, Chapter 7, 2009, pp.257-289.
[14] G.E. Revesz, Introduction to Formal Languages, McGraw-Hill, 1983.
[15] A. Salomaa, Computations and Automata, in Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Ca,mbridge, 1985.
[16] W. Kuich and S. Arto, Semirings, automata, languages, Springer Verlag, 1986.

Department of Mathematics
Shanxi Normal University
P.R. China

E-mail: jainarihant@gmx.com

Research Group in Mathematics and Applied Mathematics
Department of Mathematics
Faculty of Science
Chiang Mai University
Chiang Mai 50200
Thailand
E-mail: sorasak.1@cmu.ac.th

Department of Mathematics
Shanxi Normal University
P.R. China

E-mail: sapnajain@gmx.com
Department of Mathematics and Statistics
College of Science and Mathematics
MSU-Iligan Institute of Technology
Tibanga, Iligan City
Philippines
E-mail: gaudencio.petalcorin@g.msuiit.edu.ph
(Received: May, 2023; Revised: June, 2023)

[^0]: * Corresponding author

